The laws of physics have not always been symmetric, which may explain why you exist

 

International Conference on Nuclear Physics



Symmetry is a tidy and attractive idea that falls apart in our untidy universe. Indeed, since the 1960s, some kind of broken symmetry has been required to explain why there is more matter than antimatter in the universe—why, that is, that any of this exists at all.







But pinning down the source behind this existential symmetry violation, even finding proof of it, has been impossible.

Yet in a new paper published in Monthly Notices of the Royal Astronomical Society, University of Florida astronomers have found the first evidence of this necessary violation of symmetry at the moment of creation. The UF scientists studied a whopping million trillion three-dimensional galactic quadruplets in the universe and discovered that the universe at one point preferred one set of shapes over their mirror images.

This idea, known as parity symmetry violation, points to an infinitesimal period in our universe's history when the laws of physics were different than they are today, with enormous consequences for how the universe evolved.

The finding, established with a high level of statistical confidence, has two primary consequences. First, this parity violation could only have imprinted itself on the future galaxies during a period of extreme inflation in the earliest moments of the universe, confirming a central component of the Big Bang theory of the origin of the cosmos.

Parity violation would also help answer perhaps the most crucial question in cosmology: Why is there something instead of nothing? That's because parity violation is required to explain why there is more matter than antimatter, an essential condition for galaxies, stars, planets and life to form in the way they have.

"I've always been interested in big questions about the universe. What is the beginning of the universe? What are the rules under which it evolves? Why is there something rather than nothing?" said Zachary Slepian, a UF astronomy professor who supervised the new study. "This work addresses those big questions."

Slepian worked with UF postdoctoral researcher and the study's first author, Jiamin Hou, and Lawrence Berkeley National Laboratory physicist Robert Cahn to conduct the analysis. The trio published their findings May 22 in the journal Monthly Notices of the Royal Astronomical Society. The same researchers first proposed the idea of searching for parity violation using quadruplets of galaxies in a paper that was also recently published in Physical Review Letters.

#Physic#Science#STEM#QuantumPhysics#Astrophysics#ParticlePhysics#Relativity#Mechanics
#Thermodynamics#Electromagnetism#Optics#NuclearPhysics#Cosmology
#QuantumMechanics#GravitationalWaves#BlackHoles#SpaceTime#StringTheory#Astrobiology
#Superconductivity

Comments

Popular posts from this blog

Nuclear power: The safer and cheaper alternative to fossil fuels

Physicists Detect Subatomic Neutrinos Made by a Particle Collider for the First Time

Physics Breakthrough: Scientists Discover Rydberg Moiré Excitons