Accelerating fusion science through learned plasma control
International Conference on Nuclear Physics
To solve the global energy crisis, researchers have long sought a source of clean, limitless energy. Nuclear fusion, the reaction that powers the stars of the universe, is one contender. By smashing and fusing hydrogen, a common element of seawater, the powerful process releases huge amounts of energy.
Here on earth, one way scientists have recreated these extreme conditions is by using a tokamak, a doughnut-shaped vacuum surrounded by magnetic coils, that is used to contain a plasma of hydrogen that is hotter than the core of the Sun. However, the plasmas in these machines are inherently unstable, making sustaining the process required for nuclear fusion a complex challenge. For example, a control system needs to coordinate the tokamak's many magnetic coils and adjust the voltage on them thousands of times per second to ensure the plasma never touches the walls of the vessel, which would result in heat loss and possibly damage. To help solve this problem and as part of DeepMind’s mission to advance science, we collaborated with the Swiss Plasma Center at EPFL to develop the first deep reinforcement learning (RL) system to autonomously discover how to control these coils and successfully contain the plasma in a tokamak, opening new avenues to advance nuclear fusion research.
In a paper published today in Nature, we describe how we can successfully control nuclear fusion plasma by building and running controllers on the Variable Configuration Tokamak (TCV) in Lausanne, Switzerland. Using a learning architecture that combines deep RL and a simulated environment, we produced controllers that can both keep the plasma steady and be used to accurately sculpt it into different shapes. This “plasma sculpting” shows the RL system has successfully controlled the superheated matter and - importantly - allows scientists to investigate how the plasma reacts under different conditions, improving our understanding of fusion reactors.
"In the last two years DeepMind has demonstrated AI’s potential to accelerate scientific progress and unlock entirely new avenues of research across biology, chemistry, mathematics and now physics."
Demis Hassabis, Co-founder and CEO, DeepMind
#FusionAIAdvances #PlasmaControlRevolution #LearnedFusionScience #NextGenEnergy #AIinFusionResearch #FusionAccelerator #SmartPlasmaManipulation #AIempoweredFusion #PlasmaStabilityAI #FusionBreakthroughs
Comments
Post a Comment